Spatial-temporal (ST) graph modeling, such as traffic speed forecasting and taxi demand prediction, is an important task in deep learning area. However, for the nodes in graph, their ST patterns can vary greatly in difficulties for modeling, owning to the heterogeneous nature of ST data. We argue that unveiling the nodes to the model in a meaningful order, from easy to complex, can provide performance improvements over traditional training procedure. The idea has its root in Curriculum Learning which suggests in the early stage of training models can be sensitive to noise and difficult samples. In this paper, we propose ST-Curriculum Dropout, a novel and easy-to-implement strategy for spatial-temporal graph modeling. Specifically, we evaluate the learning difficulty of each node in high-level feature space and drop those difficult ones out to ensure the model only needs to handle fundamental ST relations at the beginning, before gradually moving to hard ones. Our strategy can be applied to any canonical deep learning architecture without extra trainable parameters, and extensive experiments on a wide range of datasets are conducted to illustrate that, by controlling the difficulty level of ST relations as the training progresses, the model is able to capture better representation of the data and thus yields better generalization.
translated by 谷歌翻译
伤口图像分割是伤口临床诊断和时间治疗的关键成分。最近,深度学习已成为伤口图像分割的主流方法。但是,在训练阶段之前,需要进行伤口图像的预处理,例如照明校正,因为可以大大提高性能。校正程序和深层模型的训练是彼此独立的,这导致了次优的分割性能,因为固定的照明校正可能不适合所有图像。为了解决上述问题,本文提出了一种端到端的双视分段方法,通过将可学习的照明校正模块纳入深度细分模型中。可以在训练阶段自动学习和更新模块的参数,而双视融合可以完全利用RAW图像和增强图像的功能。为了证明拟议框架的有效性和鲁棒性,在基准数据集上进行了广泛的实验。令人鼓舞的结果表明,与最先进的方法相比,我们的框架可以显着改善细分性能。
translated by 谷歌翻译
估计路径的旅行时间是智能运输系统的重要主题。它是现实世界应用的基础,例如交通监控,路线计划和出租车派遣。但是,为这样的数据驱动任务构建模型需要大量用户的旅行信息,这与其隐私直接相关,因此不太可能共享。数据所有者之间的非独立和相同分布的(非IID)轨迹数据也使一个预测模型变得极具挑战性,如果我们直接应用联合学习。最后,以前关于旅行时间估算的工作并未考虑道路的实时交通状态,我们认为这可以极大地影响预测。为了应对上述挑战,我们为移动用户组引入GOF-TTE,生成的在线联合学习框架以进行旅行时间估计,这是我)使用联合学习方法,允许在培训时将私人数据保存在客户端设备上,并设计设计和设计。所有客户共享的全球模型作为在线生成模型推断实时道路交通状态。 ii)除了在服务器上共享基本模型外,还针对每个客户调整了一个微调的个性化模型来研究其个人驾驶习惯,从而弥补了本地化全球模型预测的残余错误。 %iii)将全球模型设计为所有客户共享的在线生成模型,以推断实时道路交通状态。我们还对我们的框架采用了简单的隐私攻击,并实施了差异隐私机制,以进一步保证隐私安全。最后,我们对Didi Chengdu和Xi'an的两个现实世界公共出租车数据集进行了实验。实验结果证明了我们提出的框架的有效性。
translated by 谷歌翻译
由于物联网(IoT)技术的快速开发,许多在线Web应用程序(例如Google Map和Uber)估计移动设备收集的轨迹数据的旅行时间。但是,实际上,复杂的因素(例如网络通信和能量限制)使以低采样率收集的多个轨迹。在这种情况下,本文旨在解决稀疏场景中的旅行时间估计问题(TTE)和路线恢复问题,这通常会导致旅行时间的不确定标签以及连续采样的GPS点之间的路线。我们将此问题提出为不进行的监督问题,其中训练数据具有粗糙的标签,并共同解决了TTE和路线恢复的任务。我们认为,这两个任务在模型学习过程中彼此互补并保持这种关系:更精确的旅行时间可以使路由更好地推断,从而导致更准确的时间估计)。基于此假设,我们提出了一种EM算法,以替代E估计通过E步中通过弱监督的推断路线的行进时间,并根据M步骤中的估计行进时间来检索途径,以稀疏轨迹。我们对三个现实世界轨迹数据集进行了实验,并证明了该方法的有效性。
translated by 谷歌翻译
在现实生活中,每个人都在一定程度上表现出来,期望人们在互联网上表现自己更加困难,因为仍有很少的检查或后果,用于向他人张贴有毒的东西。然而,对于另一方的人来说,有毒文本往往导致严重的心理后果。检测这些有毒文本是挑战性的。在本文中,我们试图使用CNN,Naive Bayes Model以及LSTM等机器学习方法构建毒性探测器。虽然他人占据了许多基础工作,但我们的目标是建立提供比前辈更高的准确性的模型。我们使用LSTM和CNN制作了非常高的精度模型,并将其与语言处理中的去解决方案进行了比较,朴素的贝叶斯模型。嵌入方法也适用于赋予我们模型的准确性。
translated by 谷歌翻译
由于能够提高几个诊断任务的性能,深度神经网络越来越多地被用作医疗保健应用中的辅助工具。然而,由于基于深度学习系统的可靠性,概括性和可解释性的实际限制,这些方法在临床环境中不被广泛采用。因此,已经开发了方法,这在网络培训期间强加了额外的限制,以获得更多的控制,并改善探讨他们在医疗界的接受。在这项工作中,我们调查使用正交球(OS)约束对胸部X射线图像进行Covid-19案例的分类的益处。 OS约束可以写成一个简单的正交性术语,其与分类网络训练期间的标准交叉熵损耗结合使用。以前的研究表明,在对深度学习模型上对这种限制应用于应用这些限制方面表现出显着的益处。我们的研究结果证实了这些观察结果,表明正常性损失函数有效地通过Gradcam可视化,增强的分类性能和减少的模型校准误差产生了改进的语义本地化。我们的方法分别实现了两性和三类分类的准确性提高1.6%和4.8%;找到了应用数据增强的模型的类似结果。除了这些发现之外,我们的工作还提出了OS规范器在医疗保健中的新应用,提高了CoVID-19分类深度学习模型的后HOC可解释性和性能,以便于在临床环境中采用这些方法。我们还确定了我们将来可以探索进一步研究的战略的局限性。
translated by 谷歌翻译
Monocular depth estimation is a challenging problem on which deep neural networks have demonstrated great potential. However, depth maps predicted by existing deep models usually lack fine-grained details due to the convolution operations and the down-samplings in networks. We find that increasing input resolution is helpful to preserve more local details while the estimation at low resolution is more accurate globally. Therefore, we propose a novel depth map fusion module to combine the advantages of estimations with multi-resolution inputs. Instead of merging the low- and high-resolution estimations equally, we adopt the core idea of Poisson fusion, trying to implant the gradient domain of high-resolution depth into the low-resolution depth. While classic Poisson fusion requires a fusion mask as supervision, we propose a self-supervised framework based on guided image filtering. We demonstrate that this gradient-based composition performs much better at noisy immunity, compared with the state-of-the-art depth map fusion method. Our lightweight depth fusion is one-shot and runs in real-time, making our method 80X faster than a state-of-the-art depth fusion method. Quantitative evaluations demonstrate that the proposed method can be integrated into many fully convolutional monocular depth estimation backbones with a significant performance boost, leading to state-of-the-art results of detail enhancement on depth maps.
translated by 谷歌翻译
Machine Learning (ML) interatomic models and potentials have been widely employed in simulations of materials. Long-range interactions often dominate in some ionic systems whose dynamics behavior is significantly influenced. However, the long-range effect such as Coulomb and Van der Wales potential is not considered in most ML interatomic potentials. To address this issue, we put forward a method that can take long-range effects into account for most ML local interatomic models with the reciprocal space neural network. The structure information in real space is firstly transformed into reciprocal space and then encoded into a reciprocal space potential or a global descriptor with full atomic interactions. The reciprocal space potential and descriptor keep full invariance of Euclidean symmetry and choice of the cell. Benefiting from the reciprocal-space information, ML interatomic models can be extended to describe the long-range potential including not only Coulomb but any other long-range interaction. A model NaCl system considering Coulomb interaction and the GaxNy system with defects are applied to illustrate the advantage of our approach. At the same time, our approach helps to improve the prediction accuracy of some global properties such as the band gap where the full atomic interaction beyond local atomic environments plays a very important role. In summary, our work has expanded the ability of current ML interatomic models and potentials when dealing with the long-range effect, hence paving a new way for accurate prediction of global properties and large-scale dynamic simulations of systems with defects.
translated by 谷歌翻译
This work presents Time-reversal Equivariant Neural Network (TENN) framework. With TENN, the time-reversal symmetry is considered in the equivariant neural network (ENN), which generalizes the ENN to consider physical quantities related to time-reversal symmetry such as spin and velocity of atoms. TENN-e3, as the time-reversal-extension of E(3) equivariant neural network, is developed to keep the Time-reversal E(3) equivariant with consideration of whether to include the spin-orbit effect for both collinear and non-collinear magnetic moments situations for magnetic material. TENN-e3 can construct spin neural network potential and the Hamiltonian of magnetic material from ab-initio calculations. Time-reversal-E(3)-equivariant convolutions for interactions of spinor and geometric tensors are employed in TENN-e3. Compared to the popular ENN, TENN-e3 can describe the complex spin-lattice coupling with high accuracy and keep time-reversal symmetry which is not preserved in the existing E(3)-equivariant model. Also, the Hamiltonian of magnetic material with time-reversal symmetry can be built with TENN-e3. TENN paves a new way to spin-lattice dynamics simulations over long-time scales and electronic structure calculations of large-scale magnetic materials.
translated by 谷歌翻译
Mixup is a popular data augmentation technique based on creating new samples by linear interpolation between two given data samples, to improve both the generalization and robustness of the trained model. Knowledge distillation (KD), on the other hand, is widely used for model compression and transfer learning, which involves using a larger network's implicit knowledge to guide the learning of a smaller network. At first glance, these two techniques seem very different, however, we found that ``smoothness" is the connecting link between the two and is also a crucial attribute in understanding KD's interplay with mixup. Although many mixup variants and distillation methods have been proposed, much remains to be understood regarding the role of a mixup in knowledge distillation. In this paper, we present a detailed empirical study on various important dimensions of compatibility between mixup and knowledge distillation. We also scrutinize the behavior of the networks trained with a mixup in the light of knowledge distillation through extensive analysis, visualizations, and comprehensive experiments on image classification. Finally, based on our findings, we suggest improved strategies to guide the student network to enhance its effectiveness. Additionally, the findings of this study provide insightful suggestions to researchers and practitioners that commonly use techniques from KD. Our code is available at https://github.com/hchoi71/MIX-KD.
translated by 谷歌翻译